Computing Feasible Points of Bilevel Problems with a Penalty Alternating Direction Method

Published Online:

Bilevel problems are highly challenging optimization problems that appear in many applications of energy market design, critical infrastructure defense, transportation, pricing, and so on. Often these bilevel models are equipped with integer decisions, which makes the problems even harder to solve. Typically, in such a setting in mathematical optimization, one develops primal heuristics in order to obtain feasible points of good quality quickly or to enhance the search process of exact global methods. However, there are comparably few heuristics for bilevel problems. In this paper, we develop such a primal heuristic for bilevel problems with a mixed-integer linear or quadratic upper level and a linear or quadratic lower level. The heuristic is based on a penalty alternating direction method, which allows for a theoretical analysis. We derive a convergence theory stating that the method converges to a stationary point of an equivalent single-level reformulation of the bilevel problem and extensively test the method on a test set of more than 2,800 instances—which is one of the largest computational test sets ever used in bilevel programming. The study illustrates the very good performance of the proposed method in terms of both running times and solution quality. This renders the method a suitable subroutine in global bilevel solvers as well as a reasonable standalone approach.Summary of Contribution: Bilevel optimization problems form a very important class of optimization problems in the field of operations research, which is mainly due to their capability of modeling hierarchical decision processes. However, real-world bilevel problems are usually very hard to solve—especially in the case in which additional mixed-integer aspects are included in the modeling. Hence, the development of fast and reliable primal heuristics for this class of problems is very important. This paper presents such a method.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.