Pooling and Dynamic Forgetting Effects in Multitheme Advertising: Tracking the Advertising Sales Relationship with Particle Filters

Published Online:https://doi.org/10.1287/mksc.1070.0317

Firms often use a pool or series of advertising themes in their campaigns. Thus, for example, a firm may employ some of its advertising to promote price-related themes or messages and other of its advertising to promote product-related themes. This study examines the interdependence that can occur between pairs of themes in a pool (i.e., pooling effects), the impact of these pooling effects on the allocation of advertising expenditures, and the factors that can affect forgetting rates (or, conversely, carry-over rates) in a multitheme advertising environment. The study measures pooling, wear out, and forgetting (carry-over) effects for a campaign that uses five different advertising themes. To obtain these measures, I extend the linear Nerlove-Arrow (NA) (1962) model to a nonlinear model of advertising theme quality and goodwill and estimate the extended model using Markov chain Monte Carlo (MCMC) and particle filtering ideas. Particle filtering belongs to a class of sequential Monte Carlo (SMC) methods designed to estimate nonlinear/nonnormal state space models. Results show that forgetting (or carry-over) rates may be time varying and a function of prior goodwill (past advertising) and other advertising variables. Results show, moreover, that pooling effects can reduce theme wear out and, in turn, significantly improve advertising efficiency.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.