Published Online:https://doi.org/10.1287/mksc.2022.1354

Advances in natural language generation (NLG) have facilitated technologies such as digital voice assistants and chatbots. In this research, we demonstrate how NLG can support content marketing by using it to draft content for the landing page of a website in search engine optimization (SEO). Traditional SEO projects rely on hand-crafted content that is both time consuming and costly to produce. To address the costs associated with producing SEO content, we propose a semiautomated methodology using state-of-the-art NLG and demonstrate that the content-writing machine can create unique, human-like SEO content. As part of our research, we demonstrate that although the machine-generated content is designed to perform well in search engines, the role of the human editor remains essential. Comparing the resulting content with human refinement to traditional human-written SEO texts, we find that the revised, machine-generated texts are virtually indistinguishable from those created by SEO experts along a number of human perceptual dimensions. We conduct field experiments in two industries to demonstrate our approach and show that the resulting SEO content outperforms that created by human writers (including SEO experts) in search engine rankings. Additionally, we illustrate how our approach can substantially reduce the production costs associated with content marketing, increasing their return on investment.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.