Distributionally Robust Conditional Quantile Prediction with Fixed Design

Published Online:https://doi.org/10.1287/mnsc.2020.3903

Conditional quantile prediction involves estimating/predicting the quantile of a response random variable conditioned on observed covariates. The existing literature assumes the availability of independent and identically distributed (i.i.d.) samples of both the covariates and the response variable. However, such an assumption often becomes restrictive in many real-world applications. By contrast, we consider a fixed-design setting of the covariates, under which neither the response variable nor the covariates have i.i.d. samples. The present study provides a new data-driven distributionally robust framework under a fixed-design setting. We propose a regress-then-robustify method by constructing a surrogate empirical distribution of the noise. The solution of our framework coincides with a simple yet practical method that involves only regression and sorting, therefore providing an explanation for its empirical success. Measure concentration results are obtained for the surrogate empirical distribution, which further lead to finite-sample performance guarantees and asymptotic consistency. Numerical experiments are conducted to demonstrate the advantages of our approach.

This paper was accepted by Hamid Nazerzadeh, Management Science Special Section on Data-Driven Prescriptive Analytics.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.