Data Envelopment Analysis as Nonparametric Least-Squares Regression

Published Online:https://doi.org/10.1287/opre.1090.0722

Data envelopment analysis (DEA) is known as a nonparametric mathematical programming approach to productive efficiency analysis. In this paper, we show that DEA can be alternatively interpreted as nonparametric least-squares regression subject to shape constraints on the frontier and sign constraints on residuals. This reinterpretation reveals the classic parametric programming model by Aigner and Chu [Aigner, D., S. Chu. 1968. On estimating the industry production function. Amer. Econom. Rev.58 826–839] as a constrained special case of DEA. Applying these insights, we develop a nonparametric variant of the corrected ordinary least-squares (COLS) method. We show that this new method, referred to as corrected concave nonparametric least squares (C2NLS), is consistent and asymptotically unbiased. The linkages established in this paper contribute to further integration of the econometric and axiomatic approaches to efficiency analysis.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.