Published Online:https://doi.org/10.1287/trsc.2020.1033

In the realm of traffic assignment over a network involving rigid arc capacities, the aim of the present work is to generalize the model of Marcotte, Nguyen, and Schoeb [Marcotte P, Nguyen S, Schoeb A (2004) A strategic flow model of traffic assignment in static capacitated networks. Oper. Res. 52(2):191–212.] by casting it within a stochastic user equilibrium framework. The strength of the proposed model is to incorporate two sources of stochasticity stemming, respectively, from the users’ imperfect knowledge regarding arc costs (represented by a discrete choice model) and the probability of not accessing saturated arcs. Moreover, the arc-based formulation extends the Markovian traffic equilibrium model of Baillon and Cominetti [Baillon JB, Cominetti R (2008) Markovian traffic equilibrium. Math. Programming 111(1-2):33–56.] through the explicit consideration of capacities. This paper is restricted to the case of acyclic networks, for which we present solution algorithms and numerical experiments.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.