Technical Note—There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization

Published Online:https://doi.org/10.1287/opre.2019.1944

One of the most frequently used approaches to solve linear bilevel optimization problems consists in replacing the lower-level problem with its Karush–Kuhn–Tucker (KKT) conditions and by reformulating the KKT complementarity conditions using techniques from mixed-integer linear optimization. The latter step requires to determine some big-M constant in order to bound the lower level’s dual feasible set such that no bilevel-optimal solution is cut off. In practice, heuristics are often used to find a big-M although it is known that these approaches may fail. In this paper, we consider the hardness of two proxies for the above mentioned concept of a bilevel-correct big-M. First, we prove that verifying that a given big-M does not cut off any feasible vertex of the lower level’s dual polyhedron cannot be done in polynomial time unless P = NP. Second, we show that verifying that a given big-M does not cut off any optimal point of the lower level’s dual problem (for any point in the projection of the high-point relaxation onto the leader’s decision space) is as hard as solving the original bilevel problem.

INFORMS site uses cookies to store information on your computer. Some are essential to make our site work; Others help us improve the user experience. By using this site, you consent to the placement of these cookies. Please read our Privacy Statement to learn more.